Prof. Pavel Nikolaev
+82-31-299-4454

Professional Experience

* 2009 – Present: Professor, Department of Energy Science, Sungkyunkwan University, Suwon, Korea

* 1998 – 2009: Scientist, NASA Johnson Space Center, Houston, TX

* 1993 – 1998: Graduate student, Rice University, Houston, TX

* 1987 – 1993: Undergraduate, Moscow Institute of Physics and Technology, Moscow, Russia

 

 

Prof. Pavel Nikolaev joined the new department of Energy Science at Sungkyunkwan University (SKKU) in Suwon, Korea in June 2009 under the World Class University project. He was the Senior Scientist in the Applied Nanotechnology Program at NASA-Johnson Space Center where he worked for 11 years before moving to Korea.

 

Dr. Pavel Nikolaev was born in 1969 in Dolgoprudny, Russia. He received his B.S. and M.S. in physics from the Moscow Institute of Physics and Technology in 1993, where he studied high-temperature superconductivity. That was followed by Ph.D in physics from Rice University in Houston, TX in 1998, where he worked on carbon nanotube production techniques. His interests encompass production, processing, characterization and applications of carbon nanotubes. He has over 40 publications in refereed journals, over 20 conference presentations, 32 granted and 4 pending patents. He was the Welch Foundation Predoctorate Fellow (1994 – 1998), received NASA GEM (“going extra mile”) award in 2004 and Rotary Stellar award in 2007.

Brief Bio-data
For more information on the previous research of Prof. Pavel at NASA, Pls. visit here
Publications & Patents
  1. “Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination”, B. C. Pesce, P. T. Araujo, P. Nikolaev, S. K. Doorn, K. Hata, R. Saito, M. S. Dresselhaus, and A. Jorio, submitted to Journal of Physics: Condensed Matter.
  2. “Control of the diameter and chiral angle distributions during production of single-wall carbon nanotubes”, Pavel Nikolaev, William Holmes, Edward Sosa, Peter Boul, Sivaram Arepalli, Leonard Yowell, accepted  to JNN.
  3. “Effect of the laser heating of nanotube nuclei on the nanotube type population” Pavel Nikolaev, William Holmes, Edward Sosa, Peter Boul and Sivaram Arepalli, Nanoresearch 2,  p. 818 – 827 (2009)
  4. "Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies", A. Naumov, O. Kuznetsov, A. Harutyunyan, A. Green, M. Hersam, D. Resasco, P. Nikolaev, R. B. Weisman, Nanoletters  9 (9), 3203–3208 (2009)
  5. “Determination of helicities in unidirectional assemblies of graphitic or graphitic-like tubular structures”, H. Jiang, D. P. Brown, P. Nikolaev, A.G. Nasibulin, E.I. Kauppinen, Applied Physics Letters. 93, 141903 (2008).
  6. “Strain measurements on individual single-walled carbon nanotubes in a polymer host: structure-dependent spectral shifts and load transfer”, Tonya K. Leeuw, Dmitri A. Tsyboulski, Pavel N. Nikolaev, Sergei M. Bachilo, Sivaram Arepalli, and R. Bruce Weisman, Nanoletters 8(3); 826-831, (2008).
  7. “Soft-bake purification of single-walled carbon nanotubes produced by pulsed laser vaporization”, Pavel Nikolaev, Olga Gorelik, Rama kumar Allada, Edward Sosa, Sivaram Arepalli, and Leonard Yowell, Journal of Physical Chemistry C, 111, 17678-17683 (2007).
  8. “Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications”, S. Arepalli, H. Fireman, C. Huffman, P. Moloney, P. Nikolaev, L. Yowell, C.D. Higgins, K. Kim, P.A. Kohl, S.P. Turano, and W.J. Ready, JOM, 57, 12, 26-31 (2005).
  9. "A model for nucleation and growth of single wall carbon nanotubes via the HiPco process: A catalyst concentration study."   R. L. Carver, H. Q. Peng, A. K. Sadana, P. Nikolaev, S. Arepalli, C. D. Scott, W. E. Billups, R. H. Hauge, and R. E. Smalley,  Journal of Nanoscience and Nanotechnology, 5, 1035-1040 (2005).
  10. "A parametric study of single-wall carbon nanotube growth by laser ablation", Sivaram Arepalli, William A. Holmes, Pavel Nikolaev, Victor G. Hadjiev and Carl D. Scott, Journal of Nanoscience and Nanotechnology, 4, 762-773 (2004).
  11. "Gas-phase production of single-walled carbon nanotubes from carbon monoxide: review of the HiPco process", Pasha Nikolaev, chapter in Encyclopedia of Nanoscience and Nanotechnology, Amer. Sci. Publ., Stevenson Ranch, CA (2004).
  12. “Gas-Phase Production of Single-Walled Carbon Nanotubes from Carbon Monoxide: A Review of the HiPco Process”, Pavel Nikolaev, Journal of Nanoscience and Nanotechnology, 4, 307-316 (2004).
  13. “Protocol for the characterization of single-wall carbon nanotube material quality “, Sivaram Arepalli, Pavel Nikolaev, Olga Gorelik, Victor G. Hadjiev, Williams Holmes, Bradley Files and Leonard Yowell, Carbon, Vol 42, Issues 8-9, 1783-1791 (2004).
  14. "Enhanced Raman Microprobe Imaging of Single Wall Carbon Nanotubes", V. G. Hadjiev, P. Nikolaev, S. Jandl, L. Yowell and S. Arepalli, Nanotechnology, 15, 5, 562-567 (2004).
  15. “Effect of temperature on carbon nanotube diameter and bundle arrangement. Microscopic and macroscopic analysis”, Hinkov, J. Grand, M. Lamy de la Chapelle, S. Farhat, C.D. Scott, P. Nikolaev, V. Pichot, P. Launois, J. Y. Mevellec, S. Lefrant,  J. App. Phys., 95 2029-2037 (2004).
  16. "Analytical Characterization of Single Wall Carbon Nanotubes", Sivaram Arepalli, Pasha Nikolaev and Olga Gorelik, chapter in Encyclopedia of Nanoscience and Nanotechnology, Amer. Sci. Publ., Stevenson Ranch, CA (2004).
  17. "Fast Characterization of Magnetic Impurities in Single Wall Carbon Nanotubes", Feng Chen, Yuyi Xue, Viktor G. Hadjiev, C. W. Chu, Pasha Nikolaev, and Sivaram Arepalli, Applied Physics Letters, 83, 4601-4603 (2003).
  18. "Nanotube Composites and Applications for Human Spaceflight", Leonard Yowell, Bradley Files, Carl D. Scott, Brian Mayeaux, Erica Sullivan , Sivaram Arepalli, Pavel Nikolaev, Olga Gorelik, William Holmes and Victor Hadjiev, Word Space Congress, Houston, TX, IAC-02-IAA.12.1.01 (2002).
  19. “Production and measurements of isolated single wall carbon nanotubes”, Sivaram Arepalli, Pavel Nikolaev, and William Holmes, Nanonetwork Materials Conference Proceedings, Kamakura, Japan, AIP Vol. 290 (2002).
  20. “Working Toward Nanotube Composites”, Arepalli, S., Nikolaev, P., Gorelik, O., Hadjiev, V. G., Scott, C. D., and Files, B. S., Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference, Auburn, AL, August 6-10, 2001, Y. Tzeng, et al., eds.
  21. “Raman Scattering test of single wall carbon nanotube composites”, Victor G. Hadjiev, Milko N. Iliev, Sivaram Arepalli, Pavel Nikolaev and Bradley S. Files, Applied Physics Letters, 78, 3193-5 (2001).
  22. "Detection of Nickel Atom by Laser Induced Fluorescence During Carbon Nanotube Formation in a Laser Produced Plume", G. De Boer, S. Arepalli, W. Holmes, P. Nikolaev, C. Range, and C. Scott, Journal of Applied Physics, 89, 10, 5760-5768 (2001).
  23. “Production and measurements of individual single-wall nanotubes and small ropes of carbon”, Sivaram Arepalli, Pavel Nikolaev, William Holmes and Bradley S. Files, Applied Physics Letters, 78, 1610-12 (2001).
  24. “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process”, Carl D. Scott, Sivaram Arepalli, Pavel Nikolaev, and Richard E. Smalley, Applied Physics A, 72, 5, 573-580 (2001). 
  25. “Purification procedures for single-wall carbon nanotubes”, Olga Gorelik, Pavel Nikolaev and Sivaram Arepalli, NASA contractor report, NASA/CR-2000-208926, December 2000.
  26. "Diagnostics of laser produced plume under carbon nanotube growth conditions", Sivaram Arepalli, Pavel Nikolaev, William Holmes and Carl D. Scott, Applied Physics A, 70, 125-133 (2000).
  27. "Gas-Phase Method for Large-Scale Production of Single-Walled Carbon Nanotubes." M. J. Bronikowski, R. K. Bradley, P. Nikolaev, P. A. Willis, D. T. Colbert, K. A. Smith and R. E. Smalley. Abstracts of Papers of the American Chemical Society, 219, U340-U340 (2000).
  28. "Fine Structure of the Low Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes", Milko Iliev, Alexander P. Litvinchuk, Sivaram Arepalli, Pavel Nikolaev and Carl D. Scott, Chemical Physics Letters, 316 217-221, (2000).
  29. "Electronically Excited C2 from Laser Photodissociated C60", Sivaram Arepalli, Carl D. Scott, Pavel Nikolaev and Richard E. Smalley, Chemical Physics Letters, Vol 320, 26-34, (2000).
  30. "Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide." P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley. Chemical Physics Letters, 313, 91-97 (1999).
  31. "Large Scale Purification of Single Wall Carbon Nanotubes:  Process, Product and Characterization,"  A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Applied Physics A 67, 29-37 (1998).
  32. “Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes”, S.L. Fang, A.M. Rao, P.C. Eklund, P. Nikolaev, A.G. Rinzler, R.E. Smalley, Journal of Materials Research 13, 2423-2431 (1998).
  33. “Catalytic Growth of Single Wall Carbon Nanotubes from Metal Particles”, J.Hafner, M. Bronikowski, B. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K. Smith and R.E. Smalley. Chem. Phys. Lett., 296, 195-202 (1998).
  34. “Snag 'n Drag Fullerene Fibers”, A. Rinzler, A. Thess, P. Nikolaev, T. Iverson, D. T. Colbert and R. E. Smalley (1997).
  35. “Diameter doubling of single-wall nanotubes”, Pavel Nikolaev, Andreas Thess, Andrew G. Rinzler, Daniel Colbert, Richard E. Smalley, Chem. Phys. Lett 266, 422-426 (1997).
  36. “Electron nano-diffraction study of carbon single-walled nanotube ropes,” J.M. Cowley, Pavel Nikolaev, Andreas Thess, Richard E. Smalley, Chem.Phys. Lett. 265, 379-384 (1997)
  37. “Single-Wall Nanotubes Produced by Metal-Catalyzed Disproportionation of Carbon Monoxide,” H. Dai, A. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett 260 (1996) 471-475.
  38. “Metal Tipped Carbon Nanotubes,” A. Rinzler, J. H. Hafner, P. Nikolaev, H. Dai and R. E. Smalley, Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Vol. 3, ECS Conference Proceedings (May 1996).
  39. “Crystalline Ropes of Metallic Carbon Nanotubes,” A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, Vol. 273, pp. 483-487 (July 26, 1996).
  40. “From Fullerenes to Nanotubes,” J. Hafner, A. Thess, P. Nikolaev, A. Rinzler, D. T. Colbert and R. E. Smalley, Proceedings of NATO Advanced Research Workshop on “The Chemical Physics of Fullerenes 10 (and 5) Years Later,” Varenna, Italy, (June 1995).
  41. “Fullerene Nanowires,” P. Nikolaev, A. Thess, Ting Guo, D. T. Colbert and R. E. Smalley, Proceedings of  35th IUPAC Congress in Istanbul, Turkey, (August 17, 1995).
  42. “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization,” T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett., Vol. 243, pg. 49 (1995).
  43. “Unraveling Nanotubes:  Field Emission from an Atomic Wire,” A. Rinzler, J. Hafner, P. Nikolaev, L. Lou, S. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science, Vol. 269, pp. 1550-1553 (1995).
  44. “Self-Assembly of Tubular Fullerenes,” T. Guo, P. Nikolaev, A. Rinzler, D. Tomanek, D. Colbert and R. E. Smalley, Journal of Phys. Chem. Vol. 99, 10694-10697 (1995).
  45. “Field Emission and Growth of Fullerene Nanotubes,” A. G. Rinzler, J. H. Hafner, P. Nikolaev, D. T. Colbert and R. E. Smalley, MRS proceedings, vol 359, pp. 61-68 (December 1994).
  46. “Growth and Sintering of Fullerene Nanotubes,” D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E. Smalley, Science, Vol 266, 1218-1222 (1994).
  47. “Temperature Dependence of the Magnetic Field Penetration Depth in Rb3C60 Measured by AC Susceptibility,” A. M. Neminsky, P. N. Nikolaev, D. V. Shovkun, E. E. Laukhina, E. B. Yagubskii, Physical Review Letters, vol. 72, no. 19, p. 3092, (1994).
  48. “Diamagnetic Properties of RbxC60 Fine Powders,” A. Neminsky, D. Shovkun, P. Nikolaev, E. Laukhina, Physica C, vol 235-240, pp. 2483-2484 (1994).
  49. “Quasi-2D Fluctuation Contribution in London Penetration Depth in YBa2Cu3O7-d,” A. Buzdin, A. Neminsky, P. Nikolaev, C. Baraduc, Physica C, vol 227, pp. 365-370 (1994).
  50. “Temperature Dependence of Anizotropic Penetration Depth in YBa2Cu3O7  measured on aligned fine powder,” A. M. Neminsky and P. N. Nikolaev, Physica C, vol 212, pp. 389-394 (1993).

 

Granted U.S. Patents:

 

  1. 7,419,651 Method for producing self-assembled objects comprising fullerene nanotubes and compositions thereof, September 2, 2008
  2. 7,419,624 Methods for producing composites of fullerene nanotubes and compositions thereof, September 2, 2008
  3. 7,390,767 Method for producing a catalyst support and compositions thereof, June 24, 2008
  4. 7,390,477 Fullerene nanotube compositions, June 24, 2008
  5. 7,357,906 Method for fractionating single-wall carbon nanotubes, April 15, 2008
  6. 7,354,563 Method for purification of as-produced fullerene nanotubes, April 8, 2008
  7. 7,338,915 Ropes of single-wall carbon nanotubes and compositions thereof, March 4, 2008
  8. 7,205,069 Membrane comprising an array of single-wall carbon nanotubes, April 17, 2007
  9. 7,204,970 Single-wall carbon nanotubes from high pressure CO, April 17, 2007
  10. 7,166,266 Isolation and purification of single walled carbon nanotube structures, January 23, 2007
  11. 7,115,864 Method for purification of as-produced single-wall carbon nanotubes, October 3, 2006
  12. 7,108,841 Method for forming a patterned array of single-wall carbon nanotubes, September 19, 2006
  13. 7,105,596 Methods for producing composites of single-wall carbon nanotubes and compositions thereof, September 12, 2006
  14. 7,087,207 Method for forming an array of single-wall carbon nanotubes in an electric field and compositions thereof, August 8, 2006
  15. 7,071,406 Array of single-wall carbon nanotubes, July 4, 2006
  16. 7,070,754 Ropes of single-wall carbon nanotubes, July 4, 2006
  17. 7,052,666 Method for cutting single-wall carbon nanotubes, May 30, 2006
  18. 7,048,999 Method for producing self-assembled objects comprising single-wall carbon nanotubes and compositions thereof, May 23, 2006
  19. 7,048,903 Macroscopically manipulable nanoscale devices made from nanotube assemblies, May 23, 2006
  20. 7,041,620 Method for producing a catalyst support and compositions thereof, May 9, 2006
  21. 7,008,604 Method for cutting nanotubes, March 7, 2006
  22. 6,986,876 Method for forming composites of sub-arrays of single-wall carbon nanotubes, January 17, 2006
  23. 6,979,709 Continuous fiber of single-wall carbon nanotubes, December 27, 2005
  24. 6,969,504 Electrical conductors comprising single-wall carbon nanotubes, November 29, 2005
  25. 6,949,237 Method for growing single-wall carbon nanotubes utilizing seed molecules, September 27, 2005
  26. 6,939,525 Method of forming composite arrays of single-wall carbon nanotubes and compositions thereof, September 6, 2005
  27. 6,936,233 Method for purification of as-produced single-wall carbon nanotubes, August 30, 2005
  28. 6,761,870 Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure CO, July 13, 2004
  29. 6,756,026 Method for growing continuous carbon fiber and compositions thereof, June 29, 2004
  30. 6,749,827 Method for growing continuous fiber, June 15, 2004
  31. 6,683,783 Carbon fibers formed from single-wall carbon nanotubes, January 27, 2004
  32. 6,183,714 Method of making ropes of single-wall carbon nanotubes, February 6, 2001

 

Pending U.S. patent applications:

 

  1. 20080280160  Isolation and purification of single walled carbon nanotube structures.
  2. 20070048209 Continuous fiber of fullerene nanotubes.
  3. 20040265209 Method for end-derivatizing single-wall carbon nanotubes and for introducing an endohedral group to single-wall carbon nanotubes.
  4. 20030012951 Analysis of isolated and purified single walled carbon nanotube structures.