Investigation of the p-GaN Ohmic Contact Property by Using a Synchrotron Radiation Analysis

T. H. Kim*
LG Electronics Institute of Technology, Seoul 137-724 and Department of Chemistry, Sungkyunkwan University, Suwon 440-746

J. H. Boo
Department of Chemistry, Sungkyunkwan University, Suwon 440-746

LG Electronics Institute of Technology, Seoul 137-724

H. J. Shin
Pohang Accelerator Laboratory and Department of Physics, Pohang University of Science and Technology, Pohang 790-784

(Received 5 September 2006 in final form 20 April 2007)

We report the optimized process and Ohmic mechanism for an indium tin oxide (ITO)/p-GaN Ohmic contact. The current transfer enhanced layer (CTEL) on the top of p-type GaN was introduced to improve the Ohmic properties. The samples were annealed at temperatures in the range of 400–800 °C under gas ambients of 0 (i.e., pure N₂), 0.1, 0.2, and 0.5 % O₂/N₂ ratio. A small amount of O₂ addition shows much lower contact resistance than the pure N₂ only ambient while a high O₂/N₂ ratio exhibits an abruptly increasing the contact resistance and operating voltage. The contact resistance of the ITO/(CTEL)/p-GaN layer shows the best value of 1.43 × 10⁻³ ohm·cm² at the annealing temperature of 650 °C and a 0.1 % O₂/N₂ gas ambient. High resolution near edge X-ray absorption spectroscopy (NEXAFS) shows that more interstitial N₂ molecules were formed from the ITO/CTEL interfaces with increasing O₂/N₂ ratio. From the NEXAFS results, the high contact resistance could be explained with a possible reaction, 2GaN + 3/2O₂ → Ga₂O₃ + N₂, during the annealing process. It could be suggested that the newly formed oxide layer makes the depletion width more narrowing for the Ohmic contact with a tunneling junction. However, the thick oxide layer formed at the high O₂/N₂ ratio might keep the hole carriers from transporting to the electrode.

PACS numbers: 81, 82.65.-i, 73.40.Cg, 61.10.Ht
Keywords: Ohmic contact, p-GaN, ITO, NEXAFS, Contact resistance, NEXAFS

I. INTRODUCTION

GaN (III-V) compounds have attracted much attention for their use in light-emitting diodes (LEDs), laser diodes (LDs), photodetectors (PDs), solid state lighting devices, and full color display devices [1,2]. One of the major concerns in the fabrication of LEDs is that the p-GaN has poor electrical properties due to its very low carrier concentration (∼×10¹⁷ Mg/cm³), large acceptor ionization energy (∼170 meV or higher), and large work function (Φ = 7.5 eV) [3]. The poor electrical properties in the contact interface cause the device to have a lower thermal stability and reliability when the operating voltage is raised. The major loss of device performance is related to the Ohmic contact property.

Many studies have been reported the preparation of a low resistance electrode by combining various metals, such as Pt/Au, Ti/Pt/Au, Pt/Au, Ni/Cr/Au, Pd/Au, and Ni/Au [4–7]. Among them, the Ni/Au electrode was commercialized owing to its having the lowest specific electrical resistance of 2.7 × 10⁻⁴ ohm·cm². Kim et al. showed that the specific contact resistance of the semi-transparent Ni(2 nm)/Au(3 nm)/ITO(60 nm) system was 8.8 × 10⁻⁴ ohm·cm² [8]. This system was annealed at a temperature of 500 °C in an O₂ ambient.

It was recommended that pre-annealing of the Ni/Au before the ITO deposition led to a better contact resistance value of 2.2 × 10⁻⁴ ohm·cm². Horng et al. investi-
Investigation of the p-GaN Ohmic Contact Property by · · · T. H. Kim et al.

Investigation of the p-GaN Ohmic property by T. H. Kim et al. The as-prepared electrode showed Schottky characteristics; on the other hand, the rapid thermal processed one revealed a low resistance of 8.6 × 10^{-4} ohm-cm^2 at a temperature of 600 °C in an air atmosphere. It was suggested that the contact resistance was lowered by an increase in the hole carrier concentration. On the other hand, the rapid bilayer system [9]. The as-prepared electrode showed the Ohmic property of a Ni(10 nm)/ITO(250 nm) electrode shows better electrical properties than ITO. When the ITO is directly deposited on a sapphire substrate, the using metal-organic chemical vapor deposition (MOCVD). The LED structure is as follows: a GaN nucleation layer deposited at 520 °C, a 3 µm-thick Si-doped GaN layer, a five period InGaN/GaN multiple quantum well (MQW), and a 0.15 µm-thick Mg doped GaN layer. The Mg doping concentration of p-GaN was 1.2 × 10^{20}/cm^3. The charge transfer enhanced layer (CTEL) deposited on p-GaN was a Si-doped InGaN/GaN superlattice with a thickness of several nm. The ITO electrode was deposited using the R.F.-magnetron sputtering method and had a thickness of 300 nm. The electrical properties were measured at various annealing conditions for the ITO(30 nm)/CTEL(n^+ InGaN/GaN)/p^-GaN sample. The operation voltages (Vop) were measured at 20 mA with a 375 × 330 µm^2 lateral structure LED. The contact resistances were calculated using the circular-TLM method.

ITO samples of 5 nm in thickness were specially designed to study the chemistry of interface reaction because it is impossible to investigate non-destructively the interface by inserting a CTEL overlay as thick as 300 nm. These samples were annealed at temperatures of 400 °C, 650 °C, and 800 °C in (pure N2, 0.1 % O2/N2, 0.2 % O2/N2, and 0.5 % O2/N2). The absolute photon energy scale was referenced to the value of 401.10 eV, which is the second π* resonance peak for gas phase N2.

III. RESULTS AND DISCUSSION

Figure 2 shows the high-resolution N K-edge NEXAFS spectra for various conditions. As mentioned above, the NEXAFS technique is able to examine the interface reaction non-destructively, unlike XPS, SIMS, and AES

II. EXPERIMENT

The epitaxial layer of the LED structure was grown on a sapphire substrate using metal-organic chemical vapor deposition (MOCVD). The LED structure is as follows: a GaN nucleation layer deposited at 520 °C, a 3 µm-thick Si-doped GaN layer, a five period InGaN/GaN multiple quantum well (MQW), and a 0.15 µm-thick Mg doped GaN layer. The Mg doping concentration of p-GaN was 1.2 × 10^{20}/cm^3. The charge transfer enhanced layer (CTEL) deposited on p-GaN was a Si-doped InGaN/GaN superlattice with a thickness of several nm. The ITO electrode was deposited using the R.F.-magnetron sputtering method and had a thickness of 300 nm. The electrical properties were measured at various annealing conditions for the ITO(30 nm)/CTEL(n^+ InGaN/GaN)/p^-GaN sample. The operation voltages (Vop) were measured at 20 mA with a 375 × 330 µm^2 lateral structure LED. The contact resistances were calculated using the circular-TLM method.

ITO samples of 5 nm in thickness were specially designed to study the chemistry of interface reaction because it is impossible to investigate non-destructively the interface by inserting a CTEL overlay as thick as 300 nm. These samples were annealed at temperatures of 400 °C, 650 °C, and 800 °C in (pure N2, 0.1 % O2/N2, 0.2 % O2/N2, and 0.5 % O2/N2). Surface and interface analyses for the annealed samples were performed using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Near-edge X-ray absorption spectroscopy (NEXAFS) was also utilized to analyze the chemical species newly formed at the interface. The NEXAFS experiment was conducted at the 8A1(U7) beam line in the Pohang Accelerator Laboratory (PAL). The spectra were obtained by recording the sample current in total electron yield (TEY) mode as a function of energy. The absolute photon energy scale was referenced to the value of 401.10 eV, which is the second π* resonance peak for gas phase N2.

III. RESULTS AND DISCUSSION

Figure 1 shows the operation voltages (Vop) and contact resistances at a temperature of 650 °C for various ambient conditions (pure N2, 0.1 % O2/N2, 0.2 % O2/N2, and 0.5 % O2/N2). The operation voltage (Vop) and the contact resistance are 3.38 V and 4 × 10^{-2} ohm-cm^2, respectively, for pure N2, reach their lowest values of 3.27 V and 1.43 × 10^{-3} ohm-cm^2 at a 0.1 % O2/N2 ratio, and finally rise again to 3.53 V and 3.1 × 10^{-1} ohm-cm^2 with increasing rate of O2/N2 ratio. It is noted that the addition of O2 is undoubtedly required to achieve the optimum Ohmic condition during the annealing process; however, a large amount of O2 can bring about a bad effect.

Figure 2 shows the high-resolution N K-edge NEXAFS spectra for various conditions. As mentioned above, the NEXAFS technique is able to examine the interface reaction non-destructively, unlike XPS, SIMS, and AES
analyses. The optimum thickness of the ITO overlayer was chosen by the highest N K-edge intensity among the 5 nm, 10 nm, 30 nm thicknesses. Then, NEXAFS data were obtained from the ITO thickness of 5 nm. Although it is still controversial whether the N K-edge spectrum is due to either atomic nitrogen or interstitial molecular N$_2$, it has been concluded that the split high resolution spectrum, N1s \rightarrow π^* orbital transition, originates from the vibrational structure of N$_2$ molecules because this transition did not occur in the pre-annealing sample, the as-prepared one in dash-dot-dot line of the Figure 2. Similar results were also published in the previous study on the SiON thin film [17]. In the N K-edge spectra, the molecular N$_2$ intensity increased in proportion to the O$_2$ amount. This indicates that addition of O$_2$ during the annealing is essential to optimize the electrical properties however, an increasing amount of O$_2$ does not always favor the contact resistance. That is, the electrical property shows an increasing tendency after an initial decrease unlike the O$_2$ intensity. Though not shown in this study, the molecular N$_2$ intensity increased with increasing temperature from 400 °C to 800 °C in a 0.1 % O$_2$/N$_2$ ambient. There was no N$_2$ generation at the lowest annealing temperature of 400 °C, irrespective of the O$_2$ amount, however, the N$_2$ generation at occurred annealing temperatures of 650 °C and 800 °C and increased with increasing amount of O$_2$. This indicates that generation of N$_2$ gas can cause Ga-vacancies, which are created by out-diffusion of gallium atoms through the CTEL tunneling layer, resulting in a decrease in the electrical resistance of up to 1.2×10^{-3} ohm-cm2) between a 0 % and a 0.1 % O$_2$/N$_2$ ambient.
Figure 3 shows AFM and SEM micrograph images of a severely annealed surface at a high temperature (800 °C) for 1 hr. Bubbles that formed at the interface between ITO and p-GaN are observed in the picture. The harsh annealing condition leads to much more generation of N₂ gas. Then, the interface gets loose and the electrical property declines due to a reduction of the contact area, and device failure is induced by a local thermal effect.

From the above results, the Ohmic mechanism can be considered from a correlation between the evolution quantity of N₂ and the electrical properties. A chemical reaction equation for N₂ evolution can be proposed as below:

$$2\text{GaN} + 3/2\text{O}_2 \rightarrow \text{Ga}_2\text{O}_3 + \text{N}_2$$ \hspace{1cm} (1)

The Gibbs free energies of the GaN and the Ga₂O₃ compounds are −118.5 kJ/mol and −998.3 kJ/mol, respectively [18]. Since oxide is more thermodynamically stable than nitride, the direction of this reaction tends to the right. According to Eq. (1), the molecular N₂ observed in the NEXAFS spectrum would be produced by decomposition of GaN at a moderate condition, 650 °C and 0.1 % O₂/N₂. Then, hole transport might be expedited by tunneling through the thin oxide layer. However, a thickly formed Ga₂O₃ layer prevents hole carriers from transporting to the ITO electrode, and a large amount of N₂ can result in bubbling, which degrade the contact interface under severe annealing conditions, as already shown in Figure 3. This explains sufficiently the relation between annealing conditions and electrical properties. It is also indicates that we have to search for the optimum range of the process window to achieve the lowest operating voltage and contact resistance.

It is known that inserting an insulating buffer layer enhances the tunneling property. Similar studies have examined the role of an insulating layer at the interface in organic light emitting diodes [19, 20]. The reason is that dipolar electrostatic charges of ionic bonding are polarized at the interface between ITO (anode, hole injection) and a p-type semiconductor and the distribution of a dipolar layer helps the depletion width to narrow for Ohmic contact. The injection barrier height is, thus, reduced.

IV. SUMMARY

The optimized process for a indium-tin oxide (ITO)/p-GaN Ohmic contact has been studied. The current transfer enhanced layer (CTEL) was deposited on top of p-type GaN to reduce the Schottky barrier height. This was annealed under the various annealing conditions to improve the electrical property. The contact resistance of the ITO/p-GaN layer had its lowest value of 1.43 × 10⁻³ ohm·cm² at a temperature of 650 °C and a 0.1 % O₂/N₂ ratio ambient. High-resolution near-edge X-ray absorption spectroscopy (NEXAFS) and other surface analytical techniques were used to investigate the reaction of the contact layer. The NEXAFS technique has a merit in observing the interface non-destructively and directly observed the vibrationally resolved N K-edge absorption spectra at the contact interface. We proposed that the molecular N₂ would be formed from the reaction equation,$2\text{GaN} + 3/2\text{O}_2 \rightarrow \text{Ga}_2\text{O}_3 + \text{N}_2$, during the annealing process. The evolution of N₂ increases with increasing O₂/N₂ % ratio and annealing temperature. The relation between the electrical property and the annealing process was examined. It could be suggested that the newly formed oxide layer narrowed the depletion width for Ohmic contact with tunneling junction. However, a thick oxide layer and a large amount of N₂ evolution might prevent hole carriers from transporting to the electrode.

ACKNOWLEDGMENTS

Support of this work from the Pohang Accelerator Laboratory and from the BK21 project is appreciated.

REFERENCES

