A facile preparation of highly interconnected macroporous PLGA scaffolds by liquid–liquid phase separation II

Kyu Chul Shina, Bong Sup Kima, Ji Heung Kima, Tae Gwan Parkb, Jae Do Nama, Doo Sung Leea,\ast

aDepartment of Polymer Science and Engineering, Sungkyunkwan University, Suwon, Kyungki 440-746, South Korea
bDepartment of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, South Korea

Received 15 December 2004; received in revised form 4 February 2005; accepted 22 February 2005

Abstract

A regular and well-interconnected macroporous (from 50 to 200 \textmu m) poly(l-lactic acid-co-glycolic acid) (PLGA) scaffold was fabricated by means of the thermally induced phase separation (TIPS) method. Poly(l-lactic acid) (PLLA) was blended with PLGA to increase the viscosity of polymer solution; a block copolymer of poly(ethylene glycol) (PEG) with PLGA was added as a surfactant to decrease the interfacial tension between the polymer-rich and polymer-lean phases. The effect of TIPS parameters including the concentration of diblock copolymer and PLGA/PLLA ratio was also studied. The cloud-point curve shifted to higher temperatures with both increasing the PLLA composition in the PLGA/PLLA blend and the PEG contents in the additives (PEG itself and PEG–PLGA diblocks). This shifting to higher temperature increases the quenching depth during phase separation. Addition of a PEG–PLGA diblock copolymer (0.5 wt\% in solution) to the PLGA/PLLA (1/1) blend polymer in a dioxane/water solution stabilized the morphology development during TIPS with respect to interconnection and macropores, and avoided segregation or sedimentation in the late stage.

\ast Corresponding author. Tel.: +82 31 290 7280; fax: +82 31 292 8790. E-mail address: dslee@skku.edu (D.S. Lee).

Keywords: Macroporous PLGA scaffold; Thermally induced phase separation (TIPS); Liquid–liquid phase separation

1. Introduction

After the loss or failure of bodily tissues or organs, traditional surgical treatment, such as implantation of a healthy organ from a donor, is limited by the problems of immune rejection from the patient and the number of available donors [1]. The use of cell transplantation (‘tissue engineering’) is under investigation as a strategy for tissue repair and organ replacement [2–6]. Transplanted cells, cultured from a patient’s healthy tissues, can be implanted back without antagonizing the immunosolation system. In culturing the cells, the shape of the scaffold, a temporary substrate to allow growth and specialization of the cell culture, plays an important role [7–10]. Biodegradable and biocompatible synthetic polymers, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(l-lactic acid-co-glycolic acid) (PLGA), have been widely utilized as three-dimensional scaffolds [11–13]. Polymeric scaffolds must be porous enough to allow a high density of cells to be seeded, yet also possess sufficient mechanical stability and a well-defined network of interconnected pores to permit ingrowth into the implanted structure [9,14]. The optimum pore size of the scaffold required differs depending on the cells or tissues; for example, pore sizes close to 20 \textmu m are required for the ingrowth of fibroblasts and hepatocytes [15], from 50 to 150 \textmu m for skin regeneration [16], and in the range of 100–150 \textmu m for bone regeneration [17,18].

Numerous techniques have been developed for fabricating polyester scaffolds, including porogen leaching/salt leaching, emulsion freeze-drying, gas expansion, fiber bonding, and phase separation [19–23]. Recently, the method of freeze-drying through thermally induced (liquid–liquid) phase separation (TIPS) was developed for the preparation of biodegradable polyester scaffolds [21,23–28]. TIPS and freeze-drying were used to prepare a three-dimensional macroporous poly(l-lactic acid) (PLLA)…